Evaluation of white matter myelin water fraction in chronic stroke☆
نویسندگان
چکیده
Multi-component T2 relaxation imaging (MCRI) provides specific in vivo measurement of myelin water content and tissue water environments through myelin water fraction (MWF), intra/extra-cellular water fraction (I/EWF) and intra/extracellular and global geometric mean T2 (GMT2) times. Quantitative MCRI assessment of tissue water environments has provided new insights into the progression and underlying white matter pathology in neural disorders such as multiple sclerosis. It has not previously been applied to investigate changes in white matter in the stroke-affected brain. Thus, the purposes of this study were to 1) use MCRI to index myelin water content and tissue water environments in the brain after stroke 2) evaluate relationships between MWF and diffusion behavior indexed by diffusion tensor imaging-based metrics and 3) examine the relationship between white matter status (MWF and fractional anisotropy) and motor behavior in the chronic phase of stroke recovery. Twenty individuals with ischemic stroke and 12 matched healthy controls participated. Excellent to good test/re-test and inter-rater reliability was observed for region of interest-based voxelwise MWF data. Reduced MWF was observed in whole-cerebrum white matter (p < 0.001) and in the ipsilesional (p = 0.017) and contralesional (p = 0.037) posterior limb of internal capsule (PLIC) after stroke compared to whole-cerebrum and bilateral PLIC MWF in healthy controls. The stroke group also demonstrated increased I/EWF, I/E GMT2 and global GMT2 times for whole-cerebrum white matter. Measures of diffusion behavior were also significantly different in the stroke group across each region investigated (p < 0.001). MWF was not significantly correlated with specific tensor-based measures of diffusion in the PLIC for either group. Fractional anisotropy in the ipsilesional PLIC correlated with motor behavior in chronic stroke. These results provide novel insights into tissue-specific changes within white matter after stroke that may have important applications for the understanding of the neuropathology of stroke.
منابع مشابه
Hemispheric asymmetry in myelin after stroke is related to motor impairment and function
The relationships between impairment, function, arm use and underlying brain structure following stroke remain unclear. Although diffusion weighted imaging is useful in broadly assessing white matter structure, it has limited utility in identifying specific underlying neurobiological components, such as myelin. The purpose of the present study was to explore relationships between myelination an...
متن کاملCharacterization of White Matter Injury in a Rat Model of Chronic Cerebral Hypoperfusion.
BACKGROUND AND PURPOSE Chronic cerebral hypoperfusion can lead to ischemic white matter injury resulting in vascular dementia. To characterize white matter injury in vascular dementia, we investigated disintegration of diverse white matter components using a rat model of chronic cerebral hypoperfusion. METHODS Chronic cerebral hypoperfusion was modeled in Wistar rats by permanent occlusion of...
متن کاملIn-vivo multi-exponential T2, magnetization transfer and quantitative histology in a rat model of intramyelinic edema☆☆☆
Two MRI methods, multi-exponential analysis of transverse relaxation (MET2) and quantitative magnetization transfer (qMT), were used along with quantitative evaluation of histology in a study of intra-myelinic edema in rat spinal white matter. The results showed a strong linear correlation between a distinct long-T2 signal from MET2 analysis and the edema water volume fraction as measured by hi...
متن کاملWhite matter changes in the gerbil brain under chronic cerebral hypoperfusion.
BACKGROUND AND PURPOSE An animal model of chronic cerebral hypoperfusion was developed with coiled clips applied to both carotid arteries of adult Mongolian gerbils for between 1 week and 2 months. In the brain of this animal model, rarefaction of white matter with dilatation of the ventricles was frequently observed. To better understand the mechanism of white matter alteration under cerebral ...
متن کاملMultiexponential T2, magnetization transfer, and quantitative histology in white matter tracts of rat spinal cord.
Quantitative MRI measures of multiexponential T(2) relaxation and magnetization transfer were acquired from six samples of excised and fixed rat spinal cord and compared with quantitative histology. MRI and histology data were analyzed from six white matter tracts, each of which possessed unique microanatomic characteristics (axon diameter and myelin thickness, in particular) but a relatively c...
متن کامل